CondorRefiner
About 190 wordsLess than 1 minute
2025-10-09
📘 Overview
The CondorRefiner is an operator designed to improve the quality of instruction-response pairs through a two-stage process. In the first stage, it generates a critique of the initial response. In the second stage, it uses this critique to refine the original response, thereby enhancing the overall quality of the question-answering pair through iterative optimization.
__init__
def __init__(self, llm_serving: LLMServingABC = None)| Parameter | Type | Default | Description |
|---|---|---|---|
| llm_serving | LLMServingABC | None | An instance of a Large Language Model service, used for generating critiques and refined answers. |
Prompt Template Descriptions
| Prompt Template Name | Primary Use | Applicable Scenarios | Feature Description |
|---|---|---|---|
run
def run(self, storage: DataFlowStorage, input_instruction_key: str='instruction', input_output_key: str='output')| Parameter | Type | Default | Description |
|---|---|---|---|
| storage | DataFlowStorage | Required | An instance of DataFlowStorage, responsible for reading and writing data. |
| input_instruction_key | str | "instruction" | The column name in the input data that contains the instructions or questions. |
| input_output_key | str | "output" | The column name in the input data that contains the responses to be refined. This column will be overwritten with the refined answers. |
🧠 Example Usage
🧾 Input Format
🧾 Output Format

